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Abstract. In this paper we present some semismooth Newton methods for solving the semi-infinite
programming problem. We first reformulate the equations and nonlinear complementarity conditions
derived from the problem into a system of semismooth equations by using NCP functions. Under
some conditions a solution of the system of semismooth equations is a solution of the problem. Then
some semismooth Newton methods are proposed for solving this system of semismooth equations.
These methods are globally and superlinearly convergent. Numerical results are also given.
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1. Introduction

Consider the semi-infinite programming (SIP) problem in the following form:

min{f (x) : x ∈ X} (1)

where X = {x ∈ �n : g(x, v) � 0, ∀v ∈ V }, V is a nonempty compact subset of
�m, defined by V = {v ∈ �m : c(v) � 0}, f : �n → �, g : �n × �m → � and
c : �m → �q are twice continuously differentiable functions. For any x ∈ �n, let

V (x) = {v ∈ V : g(x, v) = 0},

T (x) = {∇xg(x, v) : v ∈ V (x)}
and

r = r(x) = rank {T (x)},
where rank T (x) means the cardinality of a maximum independent subset of T (x).
Then

0 � r(x) � n.
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Such a SIP problem has wide applications [16, 24] and many algorithms have
been designed to solve this problem, see [3, 4, 13, 14, 16, 17, 27, 28, 29, 30, 31].
It is well-known [26] that if x is a local minimum of the SIP problem (1) and
the extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds, i.e.,
there is a vector h ∈ �n such that

(∇xg(x, v))T h < 0

for all v ∈ V (x), then there are p positive numbers ui and p vectors vi ∈ V (x)

such that

∇f (x) +
p∑

i=1

ui∇xg(x, vi ) = 0, (2)

with p � n. If the EMFCQ does not hold, the optimality condition (2) may not
hold. The following is such an example: n = m = 1, V = [−1, 1], f (x) = x,
g(x, v) = −(x + v2)(x + 2v2). Then X = (−∞,−2] ∪ [0,∞). Thus, x = 0 is
a local minimum. V (0) = {0}. But ∇f (0) = 1 and ∇xg(0, 0) = 0. Then the left
hand side of (2) is equal to 1, i.e., (2) cannot hold for this example. However, it is
also clear that the EMFCQ does not hold at x = 0 since ∇xg(0, 0) = 0.

By the theory of basic feasible solutions of linear programming, we may always
find adequate ui > 0 and vi ∈ V (x) for (2) such that {∇xg(x, vi ) : i = 1, . . . , p}
is linearly independent and p � r.

On the other hand, if x ∈ X with p positive numbers ui and p vectors vi ∈ V (x)

satisfies (2), we call x a stationary point of the SIP problem, and call u ∈ �p

and vi for i = 1, . . . , p its Lagrange multiplier and attainers respectively. If
{∇xg(x, vi) : i = 1, . . . , p} is linearly independent, we say that the Lagrange
multiplier u ∈ �p is regular.

Naturally, we may think to find a stationary point x for the SIP problem. To
this purpose, we may relax the condition that ui > 0 to ui � 0 for constructing
algorithms. Finally, we may always drop those vi for which ui = 0.

We may also explicitly write out the conditions x ∈ X and vi ∈ V (x) as

g(x, v) � 0, ∀v ∈ V, (3)

and for i = 1, . . . , p,

ui � 0, g(x, vi) = 0. (4)

Since vi ∈ V (x) and x ∈ X, vi for i = 1, . . . , p are global minima of the
nonlinear programming problem

min{−g(x, v) : c(v) � 0}. (5)

Thus, if a constraint qualification for the nonlinear programming problem (5) holds,
then there are p auxiliary Lagrange multipliers wi ∈ �q for i = 1, . . . , p such
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that for i = 1, . . . , p,

∇vg(x, vi) −
q∑

j=1

wi
j∇cj (v

i) = 0,

wi
j � 0, cj (v

i) � 0, (6)

wi
jcj (v

i) = 0, for j = 1, . . . , q.

Well-known constraint qualifications for nonlinear programming include the lin-
ear independence constraint qualification [12], the Slater constraint qualification
[12], the Mangasarian-Fromovitz constraint qualification [12], the constant rank
constraint qualification [8], [23], etc.

We call an x ∈ �n with u ∈ �p, vi ∈ �m and wi ∈ �q , for i = 1, . . . , p,
p � n, satisfying (2), (3), (4) and (6) a substationary point of the SIP problem.

If some second-order sufficient conditions hold for (5) at vi for i = 1, . . . , p,
then a substationary point x is a stationary point of the SIP problem. If some
second-order sufficient conditions hold for (1) at x, then a stationary point x is
a local minimum of the SIP problem. It is thus desirable to find a substationary
point of the SIP problem. Note that there are only a finite number of equalities
and inequalities for x, u, vi and wi in (2), (4) and (6). But (3) involves an infinite
number of inequalities for x. In most applications, the following assumption holds
[17, 27].

(A0). For any fixed x, the number of local minima of (5) is finite.
Note that this number depends upon x, and is unknown in general. Thus, if (A0)
holds, we may solve the finite system (2), (4) and (6), find its solution x, and check
if (3) holds for these finitely many minima of (5) at x. If (3) holds at these points,
then x is a substationary point of the SIP problem. In some cases, (3) automatically
holds. For example, if g(x, ·) is concave, c is convex and p � 1, then a solution
of the finite system (2), (4) and (6) is a substationary point of the SIP problem
automatically.

Such omission of (3) under Assumption (A0) may omit some solutions x with
p = 0. But those x are solutions of

∇f (x) = 0, (7)

which is not a difficult problem in general. After finding some solutions of (7), we
need to check if (3) holds or not for these solutions.

The system (2), (4) and (6), involves some equations and nonlinear comple-
mentarity conditions. In recent years, based on the superlinear convergence theory
of generalized Newton methods for solving semismooth equations [18, 22, 15], the
Fischer-Burmeister function and other semismooth NCP functions [7, 19], glob-
ally and locally superlinearly or quadratically convergent Newton methods have
been developed for solving the nonlinear complementarity (NCP) problems and the
KKT systems [5, 10, 20, 6, 32, 19]. We thus intend to reformulate the optimality
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condition system (2), (4) and (6), into a system of semismooth equations (SE), then
develop globally and locally superlinearly (quadratically) convergent semismooth
Newton methods for solving them.

In Section 2, we give a SE reformulation of the system (2), (4) and (6). This
SE reformulation is a system of n + (m + q + 1)p semismooth equations of
n + (m + q + 1)p variables. In Section 3, we discuss conditions for superlinear
or quadratic convergence of the generalized Newton methods for solving this SE
system. In Section 4, based upon line search, we construct globally and locally
superlinearly (quadratically) convergent semismooth Newton methods for solv-
ing this SE system, and prove their convergence properties. Numerical results are
reported in Section 5. Some conclusions are given in the last section.

Another approach for solving SE systems is by smoothing Newton methods
[1, 21]. A smoothing Newton method for solving SE systems from the SIP problem
is discussed in [11].

The following notation will be used. We denote the n-dimensional unit square
matrix by In. For a continuously differentiable function � : �m → �m, we denote
the Jacobian of � at x ∈ �m by �′(x), whereas the transposed Jacobian as ∇�(x).
‖ · ‖ denotes the Euclidean norm. For a function f : �n × �m → � we denote
∇xf (x, y) the gradient of f at (x, y) with respect to x and ∇2

xxf (x, y), ∇2
xyf (x, y)

and ∇2
yyf (x, y) denote, respectively, the n×n, n×m and m×m Hessian matrices

of f at (x, y).

2. A SE Reformulation

We first briefly review NCP and semismooth functions.
A function φ : �2 → � is called an NCP function [19] if φ(a, b) = 0 if

and only if a � 0, b � 0 and ab = 0. Two well-known NCP functions are the
minimum function

φmin(a, b) = min{a, b}
and the Fischer-Burmeister function [7, 19]

φFB(a, b) =
√

a2 + b2 − a − b.

A locally Lipschitz function F : �n → �m is called semismooth [18, 22, 15] at
x ∈ �n if F is directionally differentiable at x and for all V ∈ ∂F (x + d) and
d → 0,

F ′(x; d) = V d + o(‖d‖),
where ∂F is the generalized Jacobian of F in the sense of Clarke [2]. F is called
strongly semismooth [22, 20, 7, 19] at x if F is semismooth at x and for all V ∈
∂F (x + d) and d → 0,

F(x + d) − F(x) = V d + O(‖d‖2).
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Both the minimum function and the Fischer-Burmeister function are not smooth
(continuously differentiable), but they are strongly semismooth. Suppose n = m.
We say F is CD-regular at a point x if all V ∈ ∂F (x) are nonsingular.

We now put (2), (4) and (6) together as:

∇f (x) +
p∑

i=1

ui∇xg(x, vi ) = 0,

ui � 0, g(x, vi ) = 0, for i = 1, . . . , p,

∇vg(x, vi) −
q∑

j=1

wi
j∇cj (v

i) = 0, for i = 1, . . . , p, (8)

wi
j � 0, cj (v

i) � 0, for i = 1, . . . , p, j = 1, . . . , q,

wi
j cj (v

i) = 0, for i = 1, . . . , p, j = 1, . . . , q.

Note that x, u, vi and wi are unknown vectors here. Since p depends upon x, we
call it the finite variable-dimensional optimality condition of the SIP problem.

Assume that ui > 0 for i = 1, 2, . . . , p. Multiplying the third equation in
(8) by ui and substituting wi

j by uiw
i
j for i = 1, . . . , p, j = 1, . . . , q, then the

system (8) is equivalent to the following system. This substitution is necessary for
convergence analysis of our algorithm.

∇f (x) +
p∑

i=1

ui∇xg(x, vi ) = 0,

ui � 0, g(x, vi ) = 0, for i = 1, . . . , p,

ui∇vg(x, vi ) −
q∑

j=1

wi
j∇cj (v

i) = 0, for i = 1, . . . , p, (9)

wi
j � 0, cj (v

i) � 0, for i = 1, . . . , p, j = 1, . . . , q,

wi
j cj (v

i) = 0, for i = 1, . . . , p, j = 1, . . . , q.

Let φ be a semismooth NCP function. Then we may reformulate (9) as a system
of semismooth equations:

∇f (x) +
p∑

i=1

ui∇xg(x, vi ) = 0,

φ(ui ,−g(x, vi)) = 0, for i = 1, . . . , p,

(10)

ui∇vg(x, vi ) −
q∑

j=1

wi
j∇cj (v

i) = 0, for i = 1, . . . , p,

φ(wi
j ,−cj (v

i)) = 0, for i = 1, . . . , p, j = 1, . . . , q.
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Define H by

H(z) =




∇f (x) +
p∑

i=1

ui∇xg(x, vi)

φ(u1,−g(x, v1))
...

φ(up,−g(x, vp))

u1∇vg(x, v1) −
q∑

j=1

w1
j∇cj (v

1)

...

up∇vg(x, vp) −
q∑

j=1

w
p

j ∇cj (v
p)

φ(w1
1,−c1(v

1))
...

φ(w1
q,−cq(v

1))
...

φ(w
p

1 ,−c1(v
p))

...

φ(w
p
q ,−cq(v

p))




, (11)

where z = (x, u, v,w) ∈ �n+(m+q+1)p, u ∈ �p, v = (v1, . . . , vp) ∈ �mp and
w = (w1, . . . , wp) ∈ �qp. Let H = H1 if φ = φmin and H = H2 if φ = φFB .

REMARK 1. In appearance, the system of equations (10) is not “totally” equiva-
lent to (8). It allows the case that

ui = 0, g(x, vi ) < 0.

But if there is an n + (m + q + 1)p dimensional vector satisfying (10), we may
drop the part indexed by i where ui = 0. Thus, we get a solution of (8). On the
other hand, a solution of (8) obviously satisfies (10). In this sense, (8) and (10) are
equivalent.

REMARK 2. The parameter p depends upon the problem. One possibility is to
use pk = r(xk) at the (k + 1)th iteration to find xk+1. In the latter part of this
paper, we study a simple case: p is known. This case happens in applications. For
example, if (A0) holds and for any fixed x, g(x, ·) is a concave function, then p = 0
or 1. Since the solution for p = 0 is checked by solving (7) as discussed before,
under that additional assumption, a method for solving the case p = 1, combining
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a solution of (7) satisfying (3), will solve the problem. In fact, if p is unknown but
small, say p = 2 or 3, we may try p = 1 first, if it fails, we may try p = 2, so
on. In Section 5, we give three examples with p = 1 and one example with p = 2.
The case that p is unknown and not small will be studied in future research.

3. Superlinear Convergence of Semismooth Newton Methods

A semismooth Newton method for solving H(z) = 0 may be defined as the
following: having the vector zk, compute zk+1 by

zk+1 = zk − W−1
k H(zk), Wk ∈ ∂H(zk). (12)

The following theorem was proved by Qi and Sun [22]:

THEOREM 1. Suppose that z∗ is a solution of H(z) = 0, H is locally Lipschit-
zian, semismoooth and CD-regular at z∗. Then the iteration method (12) is well
defined and the sequence {zk} generated by (12) converges to z∗ Q-superlinearly
in a neighborhood of z∗. If in addition H is strongly semismooth at z∗, then the
convergence is Q-quadratic.

Let z = (x, u, v,w) ∈ �n+(m+q+1)p be a solution of (11), where v = (v1, . . . ,

vp) ∈ �mp and w = (w1, . . . , wp) ∈ �qp. Let Q = {1, 2, . . . , q} and P =
{1, 2, . . . , p}. We make the following assumptions.

(A1). For all i ∈ P , ui > 0.
(A2). The vectors ∇xg(x, vi), i ∈ P are linearly independent.

Define

F(x, u, v) = ∇f (x) +
p∑

i=1

ui∇xg(x, vi ). (13)

For i ∈ P , define

I (vi) = {j : j ∈ Q, cj (v
i) = 0},

J (vi) = Q\I (vi).

and

L(x, ui , v
i, wi) = uig(x, vi) −

q∑
j=1

wi
jcj (v

i). (14)

Let G(x, v) be the set of all (d, ξ1, . . . , ξp) ∈ �n × �mp satisfying

dT ∇xg(x, vi) + ξT
i ∇vg(x, vi) = 0 for i ∈ P,
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and

ξT
i ∇cj (v

i) = 0 for i ∈ P, j ∈ I (vi).

We further suppose that the following assumptions hold.
(A3). For each i ∈ P , the vectors ∇cj (v

i), j ∈ I (vi) are linearly independent.
(A4). wi

j − cj (v
i) �= 0, for i ∈ P and j ∈ Q.

(A5). For all (d, ξ1, . . . , ξp) ∈ G(x, v)\{0},

dT ∇xF (x, u, v)d + 2
p∑

i=1

uid
T ∇2

xvg(x, vi )ξi

+
p∑

i=1

ξT
i ∇2

vvL(x, ui, v
i, wi)ξi > 0.

Note that (A5) is similar to (not the same as) the second order optimality conditions
for semi-infinite programming problems, given in [25].

THEOREM 2. Suppose that z = (x, u, v,w) is a solution of (11) and satisfies
(A1)-(A5). Then both H1 and H2 are CD-regular at z.

Proof. For any z, H2 is differentiable at z if and only if

u2
i + (g(x, vi))2 > 0 for all i ∈ P

and

(wi
j )

2 + (cj (v
i))2 > 0 for all i ∈ P, j ∈ Q.

For these points, we have

H ′
2(z) =




F ′
x(x, u, v) ∇xg(x, v)T (∇2

xvL) 0
�∇xg(x, v) � � 0

∇2
vxL �T ∇2

vvL −∇c(v)T

0 0 A B


 , (15)

where

∇xg(x, v) =



∇xg(x, v1)T

...

∇xg(x, vp)T


 , (16)

∇2
xvL = [u1∇2

xvg(x, v1), . . . , up∇2
xvg(x, vp)], (17)

∇2
vxL = (∇2

xvL)T , (18)
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� = diag{λ1, . . . , λp}, � = diag{γ1, . . . , γp},

λi = g(x, vi)√
u2

i + (g(x, vi))2
+ 1, for i ∈ P,

γi = ui√
u2

i + (g(x, vi))2
− 1, for i ∈ P,

� =



λ1∇vg(x, v1)T · · · 0
...

. . .
...

0 · · · λp∇vg(x, vp)T


 , (19)

∇2
vvL = diag{∇2

vvL(x, u1, v
1, w1), . . . ,∇2

vvL(x, up, vp,wp)}, (20)

∇c(v)T = diag{∇c(v1)T , . . . ,∇c(vp)T },

∇c(vi) =



∇c1(v
i)T

...

∇cq(v
i)T


 , for i ∈ P,

A = diag{A1∇c(v1), . . . , Ap∇c(vp)}, B = diag{B1, . . . , Bp},

Ai = diag{ai1, . . . , aiq}, Bi = diag{bi1, . . . , biq}, for i ∈ P,

aij = cj (v
i)√

(wi
j )

2 + (cj (vi))2
+ 1, for i ∈ P, j ∈ Q

and

bij = wi
j√

(wi
j )

2 + (cj (vi))2
− 1, for i ∈ P, j ∈ Q.

Let z be a solution of H2(z) = 0 and satisfy (A1)-(A5). Then we have ui > 0
and g(x, vi) = 0 for all i ∈ P . By the definition of the generalized Jacobian of H2,
if W ∈ ∂H2(z), we have

W =




F ′
x(x, u, v) ∇xg(x, v)T ∇2

xvL 0
∇xg(x, v) 0 � 0

∇2
vxL �T ∇2

vvL −∇c(v)T

0 0 A B


 , (21)
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where

� =



∇vg(x, v1)T · · · 0
...

. . .
...

0 · · · ∇vg(x, vp)T


 ,

A = diag{A1∇c(v1), . . . , Ap∇c(vp)}, B = diag{B1, . . . , Bp},

Ai = diag{ai1, . . . , aiq}, Bi = diag{bi1, . . . , biq}, for i ∈ P,

aij = 1, bij = 0, for i ∈ P, j ∈ I (vi), (22)

and

aij = 0, bij = −1, for i ∈ P, j ∈ Q\I (vi). (23)

Suppose that

W




d1

d2

ξ

ζ


 = 0, (24)

where d1 ∈ �n, d2 ∈ �p, ξ = (ξT
1 , ξ T

2 , . . . , ξ T
p )T ∈ �mp and ζ = (ζ T

1 , ζ T
2 , . . . ,

ζ T
p )T ∈ �qp. Then (24) implies

F ′
x(x, u, v)d1 + ∇xg(x, v)T d2 +

p∑
i=1

ui∇2
xvg(x, vi)ξi = 0, (25)

∇xg(x, v)T d1 + �ξ = 0, (26)

ui∇2
vxg(x, vi)d1 + d2i∇vg(x, vi) + ∇2

vvL(x, ui, v
i, wi)ξi

−∇c(vi)T ζi = 0, for i ∈ P, (27)

where d2i is the ith component of d2,

aij ∇cj (v
i)T ξi + bij ζij = 0, for i ∈ P, j ∈ Q. (28)

Let ζij denote the j th element of ζi . By (28), (22) and (23), for i ∈ P ,

ζij = 0 (29)
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if j ∈ Q\I (vi); and

∇cj (v
i)T ξi = 0, (30)

if j ∈ I (vi). For i ∈ P , multiplying (27) by ξT
i , by (29) and (30),

uiξ
T
i ∇2

vxg(x, vi)d1 + d2iξ
T
i ∇vg(x, vi) + ξT

i ∇2
vvL(x, ui , v

i, wi)ξi = 0. (31)

Multiplying (25) by dT
1 , we have

dT
1 F ′

x(x, u, v)d1 + dT
1 ∇xg(x, v)T d2 +

p∑
i=1

uid
T
1 ∇2

xvg(x, vi )ξi = 0. (32)

From (26),(31) and (32), we have

dT
1 F ′

x(x, u, v)d1 + 2
p∑

i=1

uid
T ∇2

xvg(x, vi)ξi

+
p∑

i=1

uiξ
T
i ∇2

vvL(x, ui , vi, wi)ξi = 0. (33)

By (26), (30), (33) and (A5), d1 = 0 and ξi = 0 for i ∈ P . From (25), ∇xg(x, v)T d2 =
0. By (A2), d2 = 0. Now (27) yields

∑
j∈I (vi)

∇cj (v
i)ζij = 0, for i ∈ P.

By (A3), ζij = 0 for i ∈ P and j ∈ I (vi). Hence [dT
1 , dT

2 , ξ T , ζ T ]T = 0. This
shows that W is nonsingular. Therefore, H2 is CD-regular at z.

Let z be a solution of H1(z) = 0 and satisfy (A1)-(A5). Then we have ui > 0
and g(x, vi) = 0 for all i ∈ P . By the definition of the generalized Jacobian of H1,
if W ∈ ∂H1(z), we have

W =




F ′
x(x, u, v) ∇xg(x, v)T ∇2

xvL 0
−∇xg(x, v) 0 −� 0

∇2
vxL �T ∇2

vvL −∇c(v)T

0 0 −A B


 , (34)

where

� =



∇vg(x, v1)T · · · 0
...

. . .
...

0 · · · ∇vg(x, vp)T


 ,
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A = diag{A1∇c(v1), . . . , Ap∇c(vp)}, B = diag{B1, . . . , Bp},

Ai = diag{ai1, . . . , aiq}, Bi = diag{bi1, . . . , biq}, for i ∈ P,

aij = 1, bij = 0, for i ∈ P, j ∈ I (vi), (35)

and

aij = 0, bij = 1, for i ∈ P, j ∈ Q\I (vi). (36)

Suppose that

W




d1

d2

ξ

ζ


 = 0, (37)

where d1 ∈ �n, d2 ∈ �p, ξ = (ξT
1 , ξ T

2 , . . . , ξ T
p )T ∈ �mp and ζ = (ζ T

1 , ζ T
2 , . . . ,

ζ T
p )T ∈ �qp. Then (37) implies

F ′
x(x, u, v)d1 + ∇xg(x, v)T d2 +

p∑
i=1

ui∇2
xvg(x, vi)ξi = 0, (38)

∇xg(x, v)d1 + �ξ = 0, (39)

ui∇2
vxg(x, vi)d1 + d2i∇vg(x, vi) + ∇2

vvL(x, ui, v
i, wi)ξi

−∇c(vi)T ζi = 0, for i ∈ P, (40)

−aij ∇cj (v
i)T ξi + bij ζij = 0, for i ∈ P, j ∈ Q. (41)

By (41), for i ∈ P ,

ζij = 0 (42)

if j ∈ Q\I (vi), here ζij denotes the j th element of ζi ,

∇cj (v
i)T ξi = 0, (43)

if j ∈ I (vi). For i ∈ P , multiplying (40) by ξT
i , by (42) and (43),

uiξ
T
i ∇2

vxg(x, vi)d1 + d2iξ
T
i ∇vg(x, vi) + ξT

i ∇2
vvL(x, ui , v

i, wi)ξi = 0. (44)
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Multiplying (38) by dT
1 , we have

dT
1 F ′

x(x, u, v)d1 + dT
1 ∇xg(x, v)d2 +

p∑
i=1

uid
T
1 ∇2

xvg(x, vi)ξi = 0. (45)

From (39), (44) and (45), we have

dT
1 F ′

x(x, u, v)d1 + 2
p∑

i=1

uid
T ∇2

xvg(x, vi)ξi

+
p∑

i=1

uiξ
T
i ∇2

vvL(x, ui , v
i, wi)ξi = 0. (46)

By (39), (43), (46) and (A5), d1 = 0 and ξi = 0 for i ∈ P . From (38), ∇xg(x, v)
T d2 = 0. By (A2), d2 = 0. Now (40) yields

∑
j∈I (vi)

∇cj (v
i)ζij = 0, for i ∈ P.

By (A3), ζij = 0 for i ∈ P and j ∈ I (vi). Hence [dT
1 , dT

2 , ξ T , ζ T ]T = 0. This
shows that W is nonsingular. Therefore, H1 is CD-regular at z. This completes the
proof.

By Theorems 1 and 2, we have the following theorem.

THEOREM 3. Let H = Hi for i = 1, 2. Suppose that z∗ = (x∗, u∗, v∗, w∗) is a
solution of H(z) = 0 and satisfies (A1)-(A5). Then the iteration method (12) is well
defined, and the sequence {zk} generated by (12) converges to z∗ Q-superlinearly
in a neighborhood of z∗. If in addition f , g and c are three times continuously
differentiable functions, then the convergence is Q-quadratic.

4. Damped Newton and Gauss-Newton Methods

In this section we present damped Newton and Gauss-Newton methods for solving
H2(z) = 0. Let

θ(z) = 1

2
H2(z)

T H2(z).

θ is continuously differentiable with the gradient given by

∇θ(z) = WT H2(z),

where W ∈ ∂H2(z).
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For any z = (x, u, v,w) ∈ �n+(m+q+1)p, where v = (v1, . . . , vp) ∈ �mp and
w = (w1, . . . , wp) ∈ �qp, let

J0(x) = {i ∈ P : ui = g(x, vi) = 0}
and

I0(v
i) = {j ∈ Q : wi

j = cj (v
i) = 0}.

Define

W =




F ′
x(x, u, v) ∇xg(x, v)T ∇2

xvL 0
�∇xg(x, v) � � 0

∇2
vxL �T ∇2

vvL −∇c(v)T

0 0 A B


 , (47)

where

� = diag{λ1, . . . , λp}, � = diag{γ1, . . . , γp},

λi = g(x, vi)√
u2

i + (g(x, vi))2
+ 1, for i ∈ P \J0(x),

γi = ui√
u2

i + (g(x, vi))2
− 1, for i ∈ P \J0(x),

and λi = 1, γi = 0 for i ∈ J0(x),

A = diag{A1∇c(v1), . . . , Ap∇c(vp)}, B = diag{B1, . . . , Bp},

Ai = diag{ai1, . . . , aiq}, Bi = diag{bi1, . . . , biq}, for i ∈ P,

aij = cj (v
i)√

(wi
j )

2 + (cj (vi))2
+ 1, for i ∈ P, j ∈ Q\I0(v

i),

and

bij = wi
j√

(wi
j )

2 + (cj (v
i))2

− 1, for i ∈ P, j ∈ Q\I0(v
i),

and aij = 1, bij = 0 for i ∈ P and j ∈ I0(v
i). Then W ∈ ∂BH2(z) ⊆ ∂H2(z).

ALGORITHM 1. (Generalized Damped Newton Method).
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Step 1. Let z0 ∈ �n+(m+q+1)p, σ, ρ ∈ (0, 1), η > 0, a > 2 and k = 0.
Step 2. If H2(z

k) = 0, stop. Otherwise, let dk be a solution of

H2(z
k) + Wkd = 0, Wk ∈ ∂H2(z

k). (48)

If (48) is not solvable, or if ∇θ(zk)T dk > −η‖dk‖a , set dk = −∇θ(zk).
Step 3. Let αk = ρjk , where jk is the smallest nonnegative integer j such that

θ(zk + ρjdk) − θ(zk) � σρj∇θ(zk)T dk,

where ρj means the j th power of ρ.
Step 4. Let zk+1 := zk + αkd

k and k := k + 1. Go to Step 2.
This algorithm is a generalization of the corresponding algorithm for the Fischer-
Burmeister equation in [5]. It is also similar to the corresponding algorithm in [10],
with an additional steepest descent direction consideration at Step 2, which treats
the case that (48) is not solvable. Similar to Theorem 11 of [5] or Theorem 4.1 of
[10], we have the following global and superlinear convergence theorem for this
algorithm. We omit its proof since it is similar to the proof of Theorem 4.1 of [10],
by using Theorem 3 of this paper.

THEOREM 4. Assume that z∗ = (x∗, u∗, v∗, w∗) is an accumulation point of {zk}
generated by Algorithm 1. If (A1)-(A5) hold at z∗, then z∗ is a solution of H2(z) =
0, and {zk} converges to z∗ Q-superlinearly. If in addition f , g and c are three
times continuously differentiable functions, then the convergence is Q-quadratic.

We may also use the Gauss-Newton technique. The following is a generalized
damped Gauss-Newton method, which is a generalization of the corresponding
algorithm in [9].

ALGORITHM 2. (Generalized Damped Gauss-Newton Method).
Step 1. Let z0 ∈ �n+(m+q+1)p, σ ∈ (0, 1

2), ρ ∈ (0, 1), β0 > 0, k = 0.
Step 2. If (Wk)T H2(z

k) = 0, where Wk ∈ ∂H2(z
k), stop. Otherwise, let dk be a

solution of

(Wk)T H2(z
k) + [(Wk)T (Wk) + βkI ]d = 0.

Step 3. Let αk = ρjk , where jk is the smallest nonnegative integer j such that

θ(zk + ρjdk) − θ(zk) � σρj∇θ(zk)T dk,

where ρj means the j th power of ρ.
Step 4. Choose βk+1 > 0. Let zk+1 := zk + αkd

k and k := k + 1. Go to Step 2.
Similar to Theorem 5.1 of [9], we have the following global and superlinear con-
vergence theorem for this algorithm. Again we omit its proof since it is similar to
the proof of Theorem 5.1 of [9], by using Theorem 3 of this paper.
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Table 1. Results for Algorithm 1

Example p Iter NG xk vk f (xk)

1 1 3 0 (-9.53e-02,9.53e-02) 1 2.20e+00

2 1 4 0 (-2.13e-01,-1.36e+00,1.85e+00) 1 5.33e+00

3 1 6 0 (7.20e-01,-1.45e+00) 0 9.72e+01

4 2 7 0 (-7.50e-01,-6.18e-01) (1,0) 1.94e-01

THEOREM 5. Let βk = min{θ(zk), ‖∇θ(zk)‖} in Algorithm 2. Then Algorithm 2
is well-defined. Assume that z∗ = (x∗, u∗, v∗, w∗) is an accumulation point of {zk}
generated by Algorithm 2. If (A1)-(A5) hold at z∗, then z∗ is a solution of H2(z) =
0, and {zk} converges to z∗ Q-superlinearly. If in addition f , g and c are three
times continuously differentiable functions, then the convergence is Q-quadratic.

5. Numerical Results

To illustrate the computational behavior of the proposed algorithms in Section 4,
Algorithm 1 was implemented in MATLAB and run on a DEC Alpha Server 8200
for the following examples from [4]. Throughout the computational experiments,
the parameters used in the algorithm were ρ = 0.5, a = 2.1, η = 10−8, and
σ = 10−4. We terminated our iteration when ‖H2(z

k)‖ < 10−6. The numerical
results are summarized in Table 1, where Iter denotes the number of iterations, NG
the number of gradient steps, xk and vk the final iterate and f (xk) the function
value of f at the final iterate xk .

EXAMPLE 1. f (x) = 1.21 exp(x1) + exp(x2), g(x, v) = v − exp(x1 + x2),

V = [0, 1]. p = 1, x0 = (0, 0)T , v0 = 0.

EXAMPLE 2. f (x) = x2
1 + x2

2 + x2
3 , g(x, v) = x1 + x2 exp(x3v) + exp(2v) −

2 sin(4x), V = [0, 1]. p = 1, x0 = (1, 1, 1)T , v0 = 1.

EXAMPLE 3. f (x) = (x1 −2x2 +5x2
2 −x3

2 −13)2 + (x1 −14x2 +x2
2 +x3

2 −29)2,

g(x, v) = x2
1 +2x2v

2 + exp(x1 +x2)− exp(v), V = [0, 1]. p = 1, x0 = (1,−1)T ,
v0 = 0.5.

EXAMPLE 4. f (x) = 1
3x2

1 + 1
2x1 + x2

2 , g(x, v) = (1 − x2
1v

2)2 − x1v
2 − x2

2 + x2,

V = [0, 1]. p = 2, x0 = (−1,−1)T , v0
1 = 0.5, v0

2 = 1.
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6. Conclusion

In this paper we proposed some semismooth Newton methods for solving the semi-
infinite programming problem. Compared with the methods proposed in [3, 4, 16,
17, 27, 28, 29, 30, 31], the advantage of the methods proposed in this paper is
that only a system of linear equations needs to be solved at each iteration. The nu-
merical tests reported in this paper are preliminary. Further experience with testing
and with actual applications will be necessary. Furthermore, it will be interesting
to determine the value p numerically. Thus, the next research topic is to combine
the approach in this paper with some other approaches, where p is determined
numerically [13, 14, 17, 27].
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